Learning for Autonomous Navigation: Extrapolating from Underfoot to the Far Field
نویسندگان
چکیده
Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter. Enabling robots to learn from experience may alleviate both of these problems. We define two paradigms for this, learning from 3-D geometry and learning from proprioception, and describe initial instantiations of them we have developed under DARPA and NASA programs. Field test results show promise for learning traversability of vegetated terrain, learning to extend the lookahead range of the vision system, and learning how slip varies with slope.
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملLearning terrain segmentation with classifier ensembles for autonomous robot navigation in unstructured environments
Autonomous robot navigation in unstructured outdoor environments is a challenging area of active research and is currently unsolved. The navigation task requires identifying safe, traversable paths that allow the robot to progress toward a goal while avoiding obstacles. Stereo is an effective tool in the near field, but used alone leads to a common failure mode in autonomous navigation in which...
متن کاملA Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملUsing Binary Classifiers to Augment Stereo Vision for Enhanced Autonomous Robot Navigation ; CU-CS-1027-07
Autonomous robot navigation in unstructured outdoor environments is a challenging area of active research. At the core of this navigation task lies the concept of identifying safe, traversable paths which allow the robot to progress toward a goal. Stereo vision is frequently exploited for autonomous navigation, but has limitations in terms of its density and accuracy in the far field. This pape...
متن کامل